martes, 12 de marzo de 2013

Sucesiones especiales


Números triangulares 
1, 3, 6, 10, 15, 21, 28, 36, 45, ...
Esta sucesión se genera a partir de una pauta de puntos en un triángulo.
Añadiendo otra fila de puntos y contando el total encontramos el siguiente número de la sucesión.

Pero es más fácil usar la regla
xn = n(n+1)/2
Ejemplo:
  • El quinto número triangular es x5 = 5(5+1)/2 = 15,
  • y el sexto es x6 = 6(6+1)/2 = 21

Números cuadrados 
1, 4, 9, 16, 25, 36, 49, 64, 81, ...
El siguiente número se calcula elevando al cuadrado su posición. 
La regla es xn = n2


Números cúbicos 
1, 8, 27, 64, 125, 216, 343, 512, 729, ...
El siguiente número se calcula elevando al cubo su posición. 
La regla es xn = n3
Sucesión de Fibonacci.
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
El siguiente número se calcula sumando los dos que están antes de él.
El 2 se calcula sumando los dos delante de él (1+1)
El 21 se calcula sumando los dos delante de él (8+13)
La regla es xn = xn-1 + xn-2
Esta regla es interesante porque depende de los valores de los términos anteriores.
Por ejemplo el 6º término se calcularía así:
x6 = x6-1 + x6-2 = x5 + x4 = 5 + 3 = 8

No hay comentarios.:

Publicar un comentario

Publicar un comentario